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Abstract
Parallel factor analysis (PARAFAC) is a powerful tool for detecting latent components in human electroencephalogram

(EEG) in the time-space-frequency domain. As an essential parameter, the number of latent components should be set in

advance. However, any component number selection method already proposed in the literature became a rule of thumb.

Existing studies have demonstrated the methods’ performance on artificial data with a simplified structure, often not

mimicking a real data character. On the other hand, the ground-truth latent structure is not always known for real-world

data. With the objective to provide a comprehensive overview of component number selection methods and discuss their

applicability to EEG, our study focuses on nontrivial and nonnegative simulated data structures resembling real EEG

properties as closely as possible. This is achieved through an accurate head model and well-controlled cortical activation

sources. By considering different noise levels and disruptions from the optimal structure, the performance of the twelve

component number selection methods is closely inspected. Moreover, we validate a new approach for component number

selection, which we recently proposed and applied to EEG tasks. We found that methods based on the eigenvalue analysis,

variance explained, or presence of redundant components are inappropriate for component number selection in EEG tensor

decomposition. On the other hand, three existing methods and the newly proposed approach produced promising results on

nontrivial simulated EEG data. Nevertheless, component number selection for PARAFAC analysis of EEG is a complex

yet unresolved problem, and new approaches are needed.

Keywords Parallel factor analysis � Component number selection � Simulated electroencephalogram

1 Introduction

Real data represent complex phenomena that often com-

bine correlated measured variables generated or deter-

mined by unobservable latent components. To better

understand the recorded data structure or to represent such

data in a parsimonious low-rank format, we often focus on

identifying and extracting these latent components [1]. A

widely used tool for this purpose represents a set of data

factorization methods, including principal component

analysis (PCA), independent component analysis (ICA),

and nonnegative matrix factorization [1]. These methods

have been studied for a long time, and their mathematical

and convergence properties are well known. These meth-

ods are based on the representation of data in the form of a

matrix, where measured variables are represented by one

dimension (modality) and repeated recordings (samples) by

the other.

However, we often observe and record and analyze data

through a set of different modalities and conditions. This is

also true in scalp electroencephalography (EEG), which is

usually carried out at various locations (electrodes), under

different conditions, or with a set of subjects. EEG data are

also often represented by their time-varying spectral

properties using the Fourier or wavelet transformation of

raw EEG records. This multimodal nature of EEG data
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follows the structure of a multiway array or a tensor, where

each modality spans one axis (a mode in tensor terminol-

ogy). Tensor data structure often occurs in psychometrics,

chemometrics, and other research domains [2]. While the

tensor represents an appropriate data structure in these

fields, a direct interpretation of tensor data is often more

complicated. Low-rank representation and latent compo-

nent identification play an essential role in tensor data

analysis.

Tensor decomposition methods have been successfully

applied to EEG data, thus leading to new insights and a

better understanding of their latent structure and generation

sources [3–6]. Such findings are consistent with our over

ten years of experience in developing and applying the

tensor decomposition methods to different EEG analysis

problems [7–10]. The most commonly used approach is

parallel factor analysis (PARAFAC) [11, 12]. PARAFAC

decomposes a tensor into a set of more accessible and

interpretable matrices with the same number of latent

components in each mode.

Unfortunately, not all matrix decomposition properties

are inherited in tensor decomposition approaches. For

example, the number of latent components in PCA is often

selected using the explained proportion of variance. In

tensor decomposition methods, the number of components

K in each mode is an important input parameter that must

be determined often in advance. If we choose a K value that

is too small, then some latent components will not be

recovered. On the other hand, if we choose a K value that is

too large, then an unnecessarily complex model will be

developed with some components that occur only by

chance or that only represent a random part of the data

(noise). Moreover, latent sources of variability would be

modeled by many correlated components. Furthermore, a

PCA model with K components is inherited in a model with

K þ 1 components, although this is not true for the PAR-

AFAC model nor any other tensor decomposition method.

These differences make component number selection even

more challenging [2].

Many methods and heuristics for choosing an appro-

priate number of components in tensor decomposition have

been proposed in the literature. However, none of them has

become a state-of-the-art method. The reason may be that

the methods follow different assumptions and computa-

tional complexity or were proposed for a specific data type.

The method’s performance is usually compared and

validated on simulated data with a simplified structure

[13–18], but which is not consistent with the real data

character [13], or simple real data with a priori known

number of components [13, 15–17, 19]. However, we are

not aware of any comparative study considering neuro-

physiological data like the human EEG signal.

Our study analyzes the performance and applicability of

twelve component number selection methods to fill this

gap. We focus on the domain of PARAFAC decomposition

of EEG signal. We aim answering the following questions:

Which methods are appropriate, and which are not for the

PARAFAC latent component number selection in EEG

signal? What is the methods’ sensitivity to different types

of noise or the method assumption violation?

For this purpose, we simulated data with known and

well-controlled properties closely mirroring the real EEG

signal character. Finally, following our previous experi-

ence and practice, we also include a new approach that we

have proposed for selecting the number of latent compo-

nents in real EEG signal tasks [9]. The method is based on

the cumulative clustering of latent components from sev-

eral tensor decomposition models, and we denote it as

tripleC.

The article is organized as follows: Sect. 1.1 brings an

overview of the related comparative studies, and the

problem statement is summarized in Sect. 1.2. Section 2

focuses on the PARAFAC model and component number

selection methods used in the study. Nine types of simu-

lated data described in Sect. 3 are then used for the

methods’ performance comparison in Sect. 4. The advan-

tages and disadvantages of the methods are discussed, and

the conclusions are stated in Sect. 5.

1.1 Related studies

Many methods and heuristics for choosing an appropriate

number of components in tensor decomposition have been

proposed in the literature. As a by-product, they also

include a short comparative study highlighting the advan-

tages of their method over competing approaches on sim-

ulated data with a known number of latent components.

The comparison is based either on a small set of approa-

ches with similar character [13, 16, 17, 20] or on a rich

collection of different methods [14, 15, 19, 21].

In these studies, component matrices of a tensor are

generated by considering two data types i) the elements of

component matrices are generated as independent and

identically distributed (iid) random samples from the

standard normal distribution N 0; 1ð Þ [14, 15], or ii) com-

ponent matrices are generated as random matrices with

orthonormal columns [16–18]. In both cases, the simulated

tensor follows a trilinear structure. The noise terms are

generated as iid samples from the normal distribution

N 0; r2ð Þ.
The orthogonality assumption simplifies computational

issues, and many component number selection methods are

directly or indirectly compatible with this assumption.

Moreover, component orthogonality was observed to
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improve solution stability, such as in psychometrics [22].

However, the premise of orthogonality is often hard to

accept and interpret when dealing with real data in

chemometrics or neurophysiology domains. The elements

of the data tensor are often nonnegative, and also, all or

selected components are assumed to be nonnegative [2, 8]

or unimodal [8, 23].

Moreover, Bro and Kiers [13] pointed out that data

simulated in this way do not necessarily follow the prop-

erties of real data, and they observed different behavior of

their method when applied to artificial and real data. They

stated that ‘‘...These results strongly indicate that none of

the real data have characteristics close to the simulated

data and that results obtained on data simulated in this

way cannot be taken to be indicative for PARAFAC results

on real data.’’ They stress the fact that real data never

follow an exact trilinear structure and include minor

deviations [13].

Any article dealing with the component number selec-

tion focuses on more complex simulations trying to mimic

the real data character. They focus on real chemometric

[13, 15, 19], music [16] or social data [17] with the number

of components known a priori or from the previous anal-

ysis. However, the EEG signal is not considered. More-

over, the proper latent structure and the correct number of

components are always questionable in this case.

The comprehensive overview of the EEG signal tensor

decomposition of Cong et al. [6] describes the component

number selection problem only marginally by mentioning

the difference in the method’s fit [18] and an ICA-based

approach. The core consistency diagnostics [13], propor-

tion of residual variance or the Bayesian information cri-

terion are considered in neurophysiologically oriented

studies [3, 4, 24, 25], or the number of latent components is

set manually without detailed explanation [5]. Neverthe-

less, studies discussing the appropriateness of the selected

approaches for EEG data are missing.

1.2 Problem statement

In this study, we aim to clarify the benefits and limits of a

set of component number selection methods when dealing

with nonnegative EEG data in the time-space-frequency

domain where the orthogonality assumption is not met. To

reach this objective, we simulated data that closely mimic

the character of time-varying human scalp EEGs [10]. Of

course, simulated data will never precisely follow the

complex structure of real data. Nevertheless, we used a

realistic head model and cortical source generation to

simulate the real EEG data properties as closely as possi-

ble. We also consider data structure variants similar to that

in [13, Section 4], with the aim of highlighting potential

pitfalls in the considered methods when a systematic

deviation from the trilinear structure is present. This pro-

cess allows us to compare and highlight the limits of the

existing and often used methods for determining the

number of components.

2 Methods

The section begins with the basic tensor notation and ter-

minology. Then, a brief concept behind the parallel factor

analysis (PARAFAC) [11, 12] is given. Finally, five sets of

existing component number selection methods and a new

approach are described.

2.1 Notation

The basic notation follows [1]. An underlined bold

uppercase letter X 2 RI1�I2�����IN , an uppercase letter

X 2 RJ1�J2 , a lowercase bold letter x 2 RL and a lowercase

letter x 2 R stand for an N-way tensor, matrix, vector and

scalar, respectively. The normal (Gaussian) and uniform

probability distributions are denoted by N and U .

The higher-order Frobenius norm of a tensor X 2
RI1�I2�...�IN [1, Section 1.4.6] is defined as the sum of its

squared elements

kXkFro ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

I1

i1¼1

X

I2

i2¼1

. . .
X

IN

iN¼1

x2
i1i2...iN

v

u

u

t :

The ‘hat’ symbol (b ) above a variable represents the cor-

responding estimate. Finally, we use the formula x[ [ y

if an x is much larger than y.

2.2 Parallel factor analysis

PARAFAC decomposes an N-way tensor X 2 RI1�I2�...�IN

into N matrices AðnÞ ¼ a
ðnÞ
1 ; a

ðnÞ
2 ; . . .; a

ðnÞ
K

� �

2 RIn�K , where

a
ðnÞ
i 2 RIn denotes the ith column of AðnÞ, n ¼ 1; . . .;N, and

K is a common number of matrix columns, that is, the

number of latent components. The model follows the

formula

X ¼ K�1 Að1Þ �2 � � � �N AðNÞ þ E;

xi1i2...iN ¼
X

K

k¼1

kka
ð1Þ
i1k a

ð2Þ
i2k . . .a

ðNÞ
iN k þ ei1i2���iN ;

ij ¼ 1; . . .; Ij; j ¼ 1; � � � ;N;

ð1Þ

where �j; j ¼ 1; . . .;N denotes the tensor-matrix product in

the jth mode [1], K 2 RK�����K is an N-way superdiagonal

tensor with nonzero elements k1; � � � ; kK only on its main

diagonal and the tensor E 2 RI1�...�IN represents an error
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term. To avoid multiplication indeterminacies, the com-

ponent matrices AðnÞ; n ¼ 1; . . .;N in the PARAFAC model

(1) are assumed to have normalized columns [1].

A kth latent component Fk is characterized by the kth

column of each component matrix, e.g., a
ð1Þ
k ; a

ð2Þ
k ; . . .; a

ðNÞ
k .

In the following text, a
ðnÞ
k ; n ¼ 1; . . .;N will represent the

nth mode of the kth component.

Under mild conditions, the PARAFAC solution was

proven to be unique up to a permutation of components’

order [26]. Several methods for component number selec-

tion rely on this PARAFAC property.

2.3 Component number selection methods

This study divides the component number selection meth-

ods into five sets according to their character and

assumptions. The number of latent components selected by

a given method is denoted as KH. Ktrue represents the

correct number of components and Kmax denotes the

maximal allowed number of components.

i) Visual inspection methods The first set includes the

proportion of variance explained (VarExpl) [2], the core

consistency diagnostics (CCD) [13] and the core consis-

tency diagnostics aided by reconstruction error (CCDaRE)

[20] which is a combination of the previous two. A given

measure is computed for PARAFAC models with K ¼
2; � � � ;Kmax components and the values are plotted against

the number of components. A point preceding a rapid

change in the curve profile is visually selected and assigned

as the optimal number of components (Fig. 1a).

ii) Methods based on PARAFAC component similarity

The nonredundant model order selection (NORMO) [19]

method examines the similarity between estimated

components of the PARAFAC models with different

numbers of extracted components. NORMO searches for

the largest KH for which the PARAFAC model extracts a

set of nonredundant components only, although in a model

with KH þ 1 components at least one redundancy occurs.

Two components Fi and Fj are considered to be redundant

if the average absolute correlation coefficient q between

their modes

RðFi;FjÞ ¼
1

N

X

N

n¼1

�

�

�
q a

ðnÞ
i ; a

ðnÞ
j

� �
�

�

�

is above a user-defined threshold. In [19], the authors

empirically set the threshold to 0.7 with the aim of

detecting highly correlated components in at least N � 1

modes.

Two NORMO versions were proposed: exhaustive

(NORMOE) and binary (NORMOB). NORMOE takes into

account all PARAFAC models with K ¼ 2; . . .;Kmax

components. NORMOB iteratively halves the set of all

possible K values until only one value K ¼ KH remains

[19].

In our previous studies, we used the approach we denote

here as tripleC [9, 27]. The method operates on the similar

principle of investigating similarities of extracted modes

from the PARAFAC models of different K ¼ 2; . . .;Kmax.

TripleC first merges components from all considered

PARAFAC models into one set and then applies a cluster

analysis with the aim of detecting homogeneous clusters of

similar components. The similarity across different modes

can be treated and weighted differently following their

dimension and property. Although PARAFAC with K

components is not completely inherited in the model with

K þ 1 components, we assume that the most specific

components occur frequently and form the dominant

clusters. A cluster is considered ‘‘dominant’’ if the ratio

RtripleC of its cardinality and the number of considered

PARAFAC models (Kmax � 1) is above 50%. This thresh-

old initially appears to be low; however, we must consider

that in PARAFAC with K\Ktrue components, not all target

components are present. Moreover, RtripleC [ 1 is also

possible. When K [ [Ktrue, PARAFAC models include

many redundant components; therefore, a target component

may occur in the model more than once. Finally, the

number of dominant clusters is considered to be the opti-

mal KH.

Different clustering methods have been proposed in the

literature. However, methods that require determining the

number of clusters in advance are not appropriate for tri-

pleC. Our practical experience shows that the best results

are often obtained with density-based clustering (DBscan)

[28]. DBscan automatically finds the best suitable number

of clusters. Moreover, components showing a high level of

Number of components

0

0.5

1

C
C

D

(a) CCD

2 4 6 8 10 2 4 6 8 10

Number of components

0.231

0.232

F
it

(b) NCH

Fig. 1 a Example of the core consistency diagnostics (CCD) behavior

(solid black line) for a randomly chosen trial from the simulated D0

dataset described in Sect. 3. A rapid drop in the CCD profile is

observed following the selection of four components (dashed red

line). b Fit (red dots) in PARAFAC models with the varying number

of latent components for a randomly chosen trial from the DBBAlow

dataset described in Sect. 3. Numerical convex hull (NCH) approach

counts only on PARAFAC models whose fit (red dots) lays on the fit’s

convex hull boundary (black line)
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dissimilarity with the other components can be identified as

noise and ignored. DBscan requires setting the minimum

number of neighbors parameter, which we set to two, and

the diameter of the epsilon neighborhood, which we fixed

to 0.5 [28].

iii) Methods based on the PARAFAC model fit A fit of the

PARAFAC model with K components is defined as

fitðKÞ ¼ kXk2
Fro � kX � bK �1

bA
ð1Þ �2 . . .�N

bA
ðNÞk2

Fro;

bA
ðnÞ 2 RIn�K ; n ¼ 1; . . .;N:

The difference in fit (DIFFIT) [18] searches for the max-

imal relative change in fit between PARAFAC models with

a consecutive number of components

DIFFITðKÞ ¼ fitðKÞ � fitðK � 1Þ
fitðK þ 1Þ � fitðKÞ ;

fitð1Þ ¼ 0;

K ¼ 2; . . .;Kmax � 1:

However, computing the fit of all PARAFAC models with

K ¼ 2; . . .;Kmax components is time-consuming, especially

when Kmax is large. Kiers and der Kinderen [17] obtained

results comparable to DIFFIT but with significantly lower

computational time using the approximate fit (Fas-

tDIFFIT). The numerical convex hull (NCH) [16] also

operates on the approximate fit, although only models with

the approximate fit lying on the convex hull boundary are

taken into account (Fig. 1b).

iv) Methods based on eigenvalue analysis The fourth set of

methods works with the matricized (unfolded) versions of a

tensor. A tensor is transformed into a matrix by stacking its

slices rowwise or columnwise [1].

The minimal description length approach (MDL) [14]

minimizes a penalized negative log-likelihood function by

using eigenvalues of 2N�1 � 1 matrix versions of the N-

way tensor. However, MDL was shown to be sensitive to

the presence of strong noise [21]. Therefore, the sparse

core method (SCORE) and the modified eigenvalue esti-

mation for Tucker rank determination (MEET) [21], as

methods using modified eigenvalue estimates, were pro-

posed to improve MDL stability and robustness.

Nevertheless, KH selected by any of the three methods

was always equal to the minimal size of the tensor in all

datasets considered in this study. These problems were

mainly associated with numerical issues due to the close-to-

zero eigenvalues. For MDL and MEET, we observed better

results when considering only the first few largest eigen-

values so as their cumulative variance explained exceeds a

user-defined threshold a. Empirically, we selected aMDL ¼
0:9 for MDL and aMEET ¼ 0:78 for MEET.

For SCORE, it is important to appropriately set the

qSCORE parameter [21, Section 5]. In this case, the qSCORE

values varied between 10�4 and 10�3 according to the level

of noise in the data.

v) Methods based on Bayesian statistics Automatic rele-

vance determination (ARD) [15] assumes that the compo-

nent matrix elements follow either normal or Laplacian

distributions, thus leading to the ridge (ARDR) or sparse

(ARDS) version of ARD. When latent components are

assumed to be nonnegative, the prior distribution becomes

rectified normal in ARDR and exponential in ARDS.

The algorithm starts by fitting the PARAFAC model with

the largest allowed number of components Kmax. Each itera-

tion step consists of updating components followed by prun-

ing out the components with their Euclidean norm under a

given small threshold b. Consequently, the number of com-

ponents iteratively decreases until the algorithm converges.

However, after applying the ARD method to our data in

Sect. 3, the resulting number of components was always

equal to Kmax, which was caused by too small default b
value [15]. By varying this parameter, we observed that the

optimal results were obtained by applying different

threshold values for each data type. In other words, it was

possible to set the optimal b only based on a priori

knowledge about the valid data structure. Different

threshold values led to different KH choices.

To mitigate this problem, we proposed the following

modified criterion for pruning out the components with a

small Euclidean norm. In the ith iteration step, we fit

PARAFAC with Ki components. These components are

ordered according to their Euclidean norms in ascending

order. Let us denote these ordered weights as

c1 � c2 � . . .� cKi
. Then, the f th component is pruned out if

1 �
cf

PKi

l¼1 cl

[ aARD;

where aARD is a user-defined threshold. In this study, we

empirically selected aARD ¼ 0:95. This criterion is a

heuristic, although it also shows more general applicability

than the original criterion. Moreover, a similar rule was

also used in [29].

Mørup and Hansen [15] recommended to avoid com-

ponent removal in the first few iterations due to poor model

estimates. For most data types considered in this study, we

rejected component removal in the first 25 iterations. For

one data type, the number of iterations was reduced to 10

due to the rapid convergence of the algorithm. Details are

provided in Sect. 4.5.

General setting across methods The VarExpl, CCD,

NORMO, tripleC, DIFFIT, and ARD methods require the

identification of the maximal number of components Kmax
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up to which the corresponding PARAFAC models should

be computed. The remaining methods work with all com-

ponent number possibilities up to the size of the tensor

(I1; I2; . . .; IN). Since it would be time-consuming to fit all

PARAFAC models with K ¼ 2; . . .;minðI1; I2; . . .; INÞ and

the correct number of components in our simulated data is

much lower than minðI1; I2; . . .; INÞ (see Sect. 3), we

decided to restrict the maximal allowed number of com-

ponents Kmax to 10. Consequently, if a method selected

KH [ 10, we set it to 10.

Whenever possible, a priori information about the non-

negativity data structure was incorporated into the method.

Unfortunately, FastDIFFIT, NCH and the methods based

on eigenvalue analysis (MDL, MEET, and SCORE) do not

allow for the application of a priori knowledge or

assumptions about the data structure.

3 Data

We considered three types of simulated data with well-

controlled properties. The datasets generated and analyzed

during the current study are available from the corre-

sponding author on reasonable request.

Type I data: Simulated EEG data The EEG signal simu-

lation follows the methods of Cohen [30]. A human cortex

is represented by 2004 dipoles placed in gray matter. We

generated one minute of broadband brain activity (BBA)

for each dipole, with a sampling rate of 256 Hz. In [30],

BBA was simulated as a smoothed random signal gener-

ated from the standard normal distribution. However, such

a signal does not mimic the well-known 1/f property of the

background EEG in the frequency domain [31]. Therefore,

we prefer using a realization of the fractional Brownian

motion with the Hurst exponent H ¼ 0:6 (Fig. 2, bottom).

Then, seven dipoles were selected to represent sources

of four oscillatory rhythms: (1) a h rhythm (5 Hz, Fig. 2,

blue) located in the frontal cortical region, (2) a l rhythm

(8 Hz, Fig. 2, green) located in the somatosensory cortex,

(3) a visual a rhythm (9 Hz, Fig. 2, yellow) located in the

occipital cortical region, and (4) a b rhythm (14 Hz, Fig. 2,

red) located in the somatomotor cortex. The l, a and b
activity sources were placed symmetrically in both the left

and right hemispheres. Narrow-band oscillatory rhythms

were generated as a sinusoidal signal with a random

modulation of frequency and amplitude at each time point.

Random modulation was performed in the frequency

domain by applying the convolution of the Gaussian kernel

and randomly generated noise with a normal distribution.

The peak frequency and full width at half maximum of this

filter were set to 15 Hz. One minute of the continuous

signal was generated for each oscillation frequency. The

time activation of each rhythm was controlled by applying

a Hann window of varying length between five and ten

seconds. The time activation of each of the four oscillatory

rhythms was generated as nonoverlapping in time (Fig. 2,

right).

Finally, a forward model was applied to map the source

cortical signal of 2004 dipoles to the human skull. The

model was computed using the Brainstorm toolbox [32] in

MATLAB [33]. This results in simulated EEG time series

as measured by 64 scalp electrodes arranged according to

the international 10–20 system.

According to the ratio between the amplitude of the

target oscillations and BBA, we distinguish clear data with

the absence of BBA (D0, ratio ¼ 0) and data with low

(DBBAlow, ratio ¼ 0:2) and high (DBBAhigh, ratio ¼ 0:8)

levels of BBA. For each data type, we generated 50 trials.

Type II data: Simulated EEG data with four oscillations

and Gaussian noise In the second step, we added normally

distributed (Gaussian) noise to the D0 data. The variance of

the noise was chosen such that the signal-to-noise ratio

(SNR) was approximately equal to the SNR of DBBAlow

and DBBAhigh data. We generated and used 50 trials of each

DGlow and DGhigh dataset.

Type III data: Simulated data with a deviation from the

trilinear structure The PARAFAC model with four com-

ponents was applied to a randomly selected D0 dataset

(Fig. 3). Then, new data were generated by back-multi-

plying the estimated component matrices bA
ð1Þ
; bA

ð2Þ
, and

bA
ð3Þ

and by adding two types of ‘‘variation’’

X ¼ X0 þ cyY þ ceE

X0 ¼ I3 �1
bA
ð1Þ �2

bA
ð2Þ �3

bA
ð3Þ
:

ð2Þ

The tensor I3 2 R4�4�4 represents a superdiagonal three-

way tensor, which includes ones on its main diagonal and

zeros elsewhere. The tensor X0 characterizes the part of

data that follows a pure trilinear structure. A minor devi-

ation from the trilinear structure is represented by the Y

term (2). It was generated in the following way

Y ¼ G�1
bA
ð1Þ �2

bA
ð2Þ �3

bA
ð3Þ

G 2 R4�4�4; gijk �Uð0; 1Þ:
ð3Þ

The elements of the noise tensor E were generated as

independent and identically distributed (iid) random sam-

ples from the normal distribution N ð0; 1Þ

E 2 RI1�I2�I3 ; eijk �N ð0; 1Þ:

Constants cy and ce influence the proportion of deviation

from the trilinear structure. We considered four cases:
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DTri11 : cy ¼ 0:045
X0k k2

Fro

Yk k2
Fro

ce ¼ 0:005
X0k k2

Fro

Ek k2
Fro

DTri12 : cy ¼ 0:005
X0k k2

Fro

Yk k2
Fro

ce ¼ 0:045
X0k k2

Fro

Ek k2
Fro

DTri21 : cy ¼ 0:9
X0k k2

Fro

Yk k2
Fro

ce ¼ 0:1
X0k k2

Fro

Ek k2
Fro

DTri22 : cy ¼ 0:1
X0k k2

Fro

Yk k2
Fro

ce ¼ 0:9
X0k k2

Fro

Ek k2
Fro

The data possess either 5% (DTri11;DTri12) or 100%

(DTri21;DTri22) disruption from a pure trilinear structure.

In all cases, the ratio between the deviation from the tri-

linear structure (Eq. 3), and Gaussian noise is either 9:1

(DTri11 and DTri21 data) or 1:9 (DTri12 and DTri22 data).

Similar data were simulated by Bro and Kiers [13].

Data preprocessing The Type III data are already in tensor

form, and no preprocessing step is needed.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (min)

-10

0

10
Fractional Brownian motion with the Hurst exponent H = 0.6

Fig. 2 Human cortex represented by 2004 dipoles; top view (figure on

the left). One minute of broadband brain activity was generated for

each dipole to follow the fractional Brownian motion (bottom). Seven

dipoles were selected as sources of oscillatory activity at 5 Hz (blue),

8 Hz (green), 11 Hz (yellow) and 14 Hz (red). The time activation of

each oscillatory rhythm (right) was simulated as nonoverlapping with

each other

Fig. 3 Graphical scheme of the

parallel factor analysis with four

components applied to a

randomly chosen realization

from the D0 dataset (see text)
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However, the simulated Type I and Type II EEG data

form a matrix of size T � 64, where T is the number of

generated time points and 64 represents the number of

electrodes. In the first step, the simulated signal from each

electrode was divided into 2-second long time windows

with 95% (1.9 sec) overlaps. Then, for each time window,

the oscillatory part of the signal amplitude spectrum was

extracted by the irregular resampling auto-spectral analysis

(IRASA) method [34]. An oscillatory amplitude spectrum

in the range of 4 to 25 Hz was used. Note that a similar

procedure led to good results when applied to real EEG

signals in our previous study [9].

4 Results

The section is divided into five subsections corresponding

to the five sets of component number selection methods.

4.1 Visual inspection methods

Manual selection of KH by using the VarExpl plots led to

systematic overestimation of Ktrue (Fig. 5a). We were not

able to select the true number of four components in the

DTri11 and DTri12 datasets, which represent data with only

5% variation from the trilinear structure. For the simulated

EEG data D0 and DGlow, VarExpl selected KH ¼ 4 in a

slightly more than half of the trials. However, the method

fails when dealing with a higher level of Gaussian noise

(DGhigh) or the presence of BBA (DBBAlow;DBBAhigh).

Moreover, VarExpl increased approximately constantly

with increasing K, and the visual selection of KH in the

VarExpl plots was challenging in these cases (Fig. 4, left).

The CCD method performed well on the DTri11 and D0

datasets (Fig. 5b), and four components were selected as

optimal in the majority of trials. However, for the other

datasets, the selected KH varied in the range between two

and seven. Similar to VarExpl, the method faced problems

for simulated EEG data and failed in the case of the most

complex DBBAhigh dataset. The main problem appears

again to be the absence of a rapid change in the CCD

profile (Fig. 4, right), leading to a high level of subjectivity

in the KH choice.

CCDaRE did not overcome the CCD outcomes

(Fig. 5c), and we assumed that this was due to the poor

performance of VarExpl, which failed to improve the CCD

performance.

4.2 Methods based on PARAFAC component
similarity

The computational time of the NORMOE method was

longer, but the method produced better results than

NORMOB. Therefore, only the results of NORMOE are

presented in this study (Fig. 5d).

NORMOE selected KH ¼ 4 in the majority of DTri11

trials. For the other datasets, KH ¼ 4 was observed in less

than 44% of trials. For DGhigh and DBBAhigh, the method

was not able to determine a KH value lower than the

maximal allowed number of components. We observed that

the major problem was the numerically weak correlations

between the estimated components due to Gaussian noise

or BBA added. However, a visual inspection of the esti-

mated components recovered a high similarity between

their characteristics from a physiological point of view.

As depicted in Fig. 5e, tripleC successfully selected

KH ¼ 4 in the majority of datasets with a small variation

from the trilinear structure. This is also true in the case of

simulated EEG data that included either four oscillations

(D0) only or also after adding Gaussian noise with low

variance (DGlow).

The results suggest that tripleC slightly underestimates

the component number when a higher level of Gaussian

noise is present (DTri22;DGhigh). For datasets with BBA,

the selected component number varied between four and

five. TripleC is a heuristic, but it outperformed NORMO

and other visual inspection methods. This cumulative

component clustering approach was successfully used in

our previous studies that used real EEG data; therefore,

good performance on simulated data was expected.
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Fig. 4 Example of the VarExpl
(left) and CCD (right) profiles

computed for randomly selected

trials of the DGhigh;DBBAlow,

and DBBAhigh datasets described

in details in Sect. 3. The

datasets generated and analyzed

during the current study are

available from the

corresponding author on

reasonable request
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4.3 Methods based on the PARAFAC model fit

The difference in fit (DIFFIT) performed poorly for all

considered types of data (Fig. 6a). The selected KH varied

between three and nine. However, since the PARAFAC

model’s fit and VarExpl are highly related, the observed

poor performance of VarExpl predicts inferior results for

DIFFIT.

The FastDIFFIT and NCH methods both use the

approximate fit and performed well on the DTri11;DTri12

and DTri21 datasets, where they outperformed tripleC

(Fig. 6b and 6c). Similar to tripleC, their performance for

DTri22 deteriorated due to the presence of a higher pro-

portion of Gaussian noise. However, compared with tri-

pleC, the performance of FastDIFFIT and NCH declined

when considering simulated EEG data, regardless of the

presence of BBA or Gaussian noise.
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(e) tripleC

Fig. 5 Proportion of selected number of components (K ¼ 2; . . .; 10)

in 50 trials using nine datasets obtained by the manual visual

inspection of the variance explained (VarExpl) and core consistency

diagnostics (CCD) plots, or automatically by the core consistency

diagnostics aided by reconstruction error (CCDaRE), the exhaustive

non-redundant model order selection (NORMOE) and cumulative

component clustering (tripleC) methods. Only nonzero values are

depicted. The red rectangle depicts the true number of four

components
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(h)ARDS

Fig. 6 Proportion of selected number of components (K ¼ 2; . . .; 10)

in 50 trials using nine datasets obtained by the difference in fit

(DIFFIT) and its fast version (FastDIFFIT), numerical convex hull

(NCH), minimal description length (MDL), modified eigenvalue

estimation for Tucker rank determination (MEET), sparse core

(SCORE) method and ridge and sparse version of the automatic

relevance determination (ARDR;ARDS) methods. Only nonzero

values are depicted. The red rectangle depicts the true number of

four components
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4.4 Methods based on eigenvalue analysis

MDL, MEET and SCORE behaved similarly on each

dataset. The methods selected at most two different KH

values among 50 trials (Fig. 6d, e, and f), indicating con-

sistency in their outcome. However, the true KH ¼ 4 was

selected only sporadically.

MDL selected KH close to the true four components for

the four datasets with a small deviation from the trilinear

structure (Fig. 6d). This finding indicates that MDL should

also perform well on real nonnegative data with a minor

deviation from the trilinear structure or the presence of

Gaussian noise. However, problems occurred on simulated

EEG data, for which MDL failed to reduce the maximal

allowed number of components in the presence of BBA or

Gaussian noise.

We also tested the MEET and SCORE algorithms, where

numerical correction of eigenvalues was proposed to

improve MDL behavior [21]. However, although the

SCORE algorithm produced acceptable results for trilinear

data and DGlow datasets, for the other datasets, it chose

either the lowest or the highest allowed number of com-

ponents (Fig. 6f). Moreover, MEET showed inferior per-

formance when compared to SCORE (Fig. 6e).

To improve MDL, MEET or SCORE performance, we

carefully tuned the thresholds aMDL and aMEET in MDL and

MEET and qSCORE in SCORE, but without noticeable

improvement.

4.5 Methods based on Bayesian statistics

Two ARD versions, ARDR and ARDS, produced similar

results. We expected that ARDS would lead to a lower KH

than ARDR, but we did not observe any significant differ-

ence between the KH selection by ARDR and ARDS. We

hypothesized that the difference between these two ARD

versions may be more pronounced in the other tensor

decomposition methods, e.g., the Tucker model [35];

however, this is a question for further research.

For DTri11 and DBBAhigh data, ARDR was unable to

reduce the maximal allowed number of components

Kmax ¼ 10. In the first case, the algorithm’s convergence in

the first few iterations avoided pruning out any component.

Note that the algorithm did not allow for pruning out any

component in the first 25 iterations. We solved the problem

by reducing this number to 10. For the DBBAhigh data, the

problem was associated with the presence of BBA with

high amplitude, although lowering the threshold aARD for

removing the unnecessary components to 0.9 also solved

this issue.

Both ARD versions worked well for trilinear data. The

selected KH was close to four, which makes the results

comparable to the tripleC, FastDIFFIT and NCH approa-

ches. When dealing with simulated EEG data, ARD out-

performed methods based on the approximate fit but not the

tripleC approach.

5 Conclusion

We compared five different sets of component number

selection methods on simulated data with a nontrivial and

nonnegative structure. We considered two types of simu-

lated EEG data; data with BBA or Gaussian noise and data

with a minor deviation from the trilinear structure and

Gaussian noise.

The simulated data results indicate that the visual

inspection methods, methods based on eigenvalue analysis

and the NORMO approach are not appropriate for com-

ponent number selection in EEG tensor decomposition.

The methods based on eigenvalue analysis produced the

worst results from all considered methods. When working

with eigenvalues, we indirectly assume that the compo-

nents are orthogonal or close to orthogonal. However, this

condition is not fulfilled in any of the considered datasets.

Although all three methods were proven to perform well on

other types of data [21], we recommend not using them

when PARAFAC is applied to real EEG data represented

by nonnegative features. In this case, the orthogonality of

the components does not make much sense from an inter-

pretation perspective.

The core consistency diagnostics (CCD) was used for

component number selection in several EEG tensor

decomposition studies [3, 4, 24], but without warrantying

the method’s appropriateness. We showed that CCD,

together with VarExpl and CCDaRE, produced inferior

results for the most superficial data that presented a minor

deviation from the trilinear structure. This result is con-

sistent with our previous study focusing on EEG tensor

decomposition in post-stroke patients [9], where CCD and

VarExpl were observed to change approximately linearly

with the increasing number of components without a rapid

drop allowing us to select an optimal number of compo-

nents visually. Moreover, the poor performance of

CCDaRE was somewhat expected due to the inferior

results of CCD and VarExpl. Finally, a disadvantage of

these approaches is the need to visually inspect plot pro-

files, which brings high subjectivity when selecting the

final component number.

The core problem of the NORMO failure lies in

numerically weak correlations between physiologically

similar components when noise or BBA is present.

Therefore, we expect the inferior performance of NORMO

also in real data cases, as both noise and BBA are always

present in the real EEG signal.
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For nonnegative real data describing complex phenom-

ena, such as EEG, we recommend either using the tripleC

or ARD approach. FastDIFFIT or NCH are also good

candidates, although they do not incorporate restrictions to

latent components, such as the desired nonnegativity.

Therefore, they provide the same results regardless of

whether a priori information about the data character is

available. On the other hand, ARD and tripleC can work

with any reasonable restriction applied to latent

components.

Moreover, ARD and tripleC showed to be less sensitive

to the presence of noise or BBA, leading to only a slight

overestimation of the correct number of components. On

the other hand, NCH and fastDIFFIT produced less con-

sistent results in this case.

The disadvantage of tripleC is the need to estimate

components in a sufficiently high number of PARAFAC

models, which increases its computational and time costs.

In this sense, FastDIFFIT and NCH are the fastest

methods.

Despite all positive results presented in the study,

component number selection in PARAFAC remains a

challenging problem, which is particularly true when data

follow a nonnegative and complex structure. Because

information about the true data structure is usually not

known when dealing with real data, the most suit-

able component number selection method cannot be

selected a priori. Therefore, one may still combine strict

component number selection with an exploratory approach

in which the selected components are visually inspected

and their relevance interpreted. TripleC is a promising

approach in this direction.
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